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The Markovian random coupling (MRC) model is a modified form of the 
stochastic model of the Navier-Stokes equations introduced by Kraichnan 
(1958, 1961). Instead of constant random coupling coefficients, white-noise time 
dependence is assumed for the MRC model. Like the Kraichnan model, the 
MRC model preserves many structural properties of the original Navier-Stokes 
equations and should be useful for investigating qualitative features of turbulent 
flows, in particular in the limit of vanishing viscosity. The closure problem is 
solved exactly for the MRC model by a technique which, contrary to the original 
Kraichnan derivation, is not based on diagrammatic expansions. A closed 
equation is obtained for the functional probability distribution of the velocity 
field which is a special case of Edwards’ (1964) Fokker-Planck equation; this 
equation is an exact consequence of the stochastic model whereas Edwards’ 
equation constitutes only the first step in a formal expansion based directly on the 
Navier-Stokes equations. From the functional equation an exact master equa- 
tion is derived for simultaneous second-order moments which happens to  be 
essentially a Markovianized version of the single-time quasi-normal approxima- 
tion characterized by a constant triad-interaction time. 

The explicit form of the MRC master equation is given for the Burgers equa- 
tion and for two- and three-dimensional homogeneous isotropic turbulence. 

1. Introduction 
Stochastic models as a tool for incompressible turbulence theory were intro- 

duced by Kraichnan (1958, 1961). They have the very interesting feature that 
they embody many of the structural properties of the Navier-Stokes equations: 
the same nonlinearity and dimensionality, non-local pressure interactions, con- 
servation of total energy and total helicity (Brissaud, Frisch, Leorat, Lesieur & 
Mazure 1973) by the nonlinear terms, the existence of absolute equilibrium solu- 
tions for the inviscid truncated equations (Lee 1952; Kraichnan 1967, 1973; 
Frisch et al. 1973)’ etc. At the same time these models lead, in a certain asymptotic 
limit, to a closed set of ‘master equations ’ for the two-time velocity covariance 
and response function. 

For the first stochastic model introduced, the random coupling model, the 
original derivation (Kraichnan 196 1) makes use of formal diagrammatic per- 
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turbation expansions which are known to diverge. Since then, simpler Markovian 
models have been introduced (Leith 1971; Kraichnan 1971; Herring & Kraich- 
nan 1972). The corresponding master equations have been related to linear 
Langevin-type models but no direct derivation from a nonlinear stochastic model 
of the Navier-Stokes equations is to  be found in the literature. 

It is our purpose to give a new self-contained non-diagrammatic derivation 
for a very simple stochastic model called the Markovian random coupling (MRC) 
model . This derivation is based on a Liouville equation formalism used by Herr- 
ing (1965, 1966) and Edwards (1964), here applied to a stochastic model of the 
Navier-Stokes equations and not to the original equations. A master equation 
is obtained for the simultaneous velocity covariance which does not involve the 
response function. We mention that a non-diagrammatic derivation of the 
Kraichnan equation has been given previously by Frisch & Bourret (1970) by 
the method of parastochastic operators; however, this technique applies only to 
linear stochastic equations (e.g. turbulent diffusion) with no obvious generaliza- 
tion to nonlinear equations. 

2. The Markovian random coupling model: derivation of the master 
equation 

In  this section we are concerned with statistical solutions of the Navier- 
Stokes equations; in order to ensure the existence of stationary solutions we add 
a random driving term f ( x , t ) .  To construct the Markovian random coupling 
(MRC) model it is convenient to  write the Navier-Stokes equations in a more 
abstract form. For this purpose, we first eliminate the pressure term in the usual 
way assuming, for simplicity, that there are no boundary conditions a t  finite 
distances; this yields 

* V . ( u . V ) u  +VV2U+f(X,t), (2.1) --U(X,t) = -(u.V)u-v - I a 1 

at { 4 n / 4  
where * denotes a convolution product in x space. This equation can be written 
in a more abstract form as 

(2.2) 
where u and f are elements in a function space and D and L are respectively linear 
and bilinear operators. If a basis is chosen in this function space (e.g. a Fourier 
basis), the above equation will take the form 

aujat = L(u, u) + Du +f, 

aua(t)/at = Labcubuc f DabUb (2.3) 
where the indices a, b and c stand both for the space components of vectors and for the 
Fourier wave vectors. Since LabcUbUc does not change if we symmetrize Labc with 
respect to b and c, we assume L a b c  = Lac?,. With this notation, the MRC equations 
read 

The indices a, p and y run from 1 to N ;  eventually we shall let n --f 00. For fixed 
a, p and y, the coupling coefficient Qapy(t) is a real Gaussian white-noise process 
with zero mean and covariance 

(Q( t )  a@')) = TOS(t-t'), (2.5) 
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where the parameter 7o has the dimensions of time and will be called the triad- 
interaction time. Furthermore the various QaBY are identically distributed and 
independent, with the restriction that QaBr must be completely symmetric with 
respect to a, /3 and y to ensure energy conservation. The f a ( t )  constitute a set 
of N identically distributed and independent Gaussian driving forces with zero 
mean and covariance 

where Fab is an arbitrary space covariance which controls the energy injection. 
Finally, the random initial velocity fields uz( 0) are given, identically distributed, 
independent among themselves and independent of the driving forces and coup- 
ling coefficients. 

It must be stressed that the greek superscripts differ basically from the latin 
subscripts: the latin indices stand for both the space componentsofvectors and for 
Fourier wave vectors, whereas the greek indices label various realizations of 
the turbulent flow which are coupled through the QaBr. The MRC model differs 
from the Kraichnan (1961) random coupling model only by the introduction of 
time-dependent coupling coefficients. Similar ‘ Markovian ’ models are discussed 
by Herring & Kraichnan (1972). 

The MRC model can be viewed as a random coupling introduced among a large 
collection of identically distributed independent turbulent flows. The original 
problem already contains two stochastic elements : the initial velocity field and 
the driving force. The introduction of an additional stochastic element with no 
memory (Markovian) allows solution of the closure problem in the limit N --f 00. 

Indeed we shall show that the simultaneous covariance of the model 
1 N  

?&,(t) = lim - (u:(t)ug(t)) 
~ + m  Na=l 

satisfies a closed master equation. Notice that the MRC model preserves the 
structural properties listed in $1 .  

Now, we turn to the derivation of the MRC master equation for the simul- 
taneous velocity covariance. To avoid the use of functional differentiation, let us 
assume for convenience that all the indices in (2.3) are discrete. This equation can 
be viewed as describing the motion of a point with co-ordinates u: in a certain 
phase space. For each realization of the driving forces &(t) and the coupling 
coefficients QaB,(t) we consider a Gibbsian ensemble of initial velocity fields 
characterized by a density p(0;u;)  in the phase space. When each realization 
evolves according to (2.41, the density changes according to the Liouville equa- 

(E(t)f;(t’)) = 70Pab8(t-t’) (no summation over a) ,  (2.6) 

(2.7) 

tion a 
at au: 
2+- (?-iZp) = 0. 

Equation (2.8) is just an equation of continuity in the phase space. It is easily 
seen that this equation is the functional Fourier transform of the Hopf (1962) 
equation for the characteristic functional. For the ordinary Navier-Stokes 
equations a similar Liouville formalism has been used by Herring (1965) and 
Edwards (1964). In full, the Liouville equation reads 

10-2 
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We shall be interested in the probability density P(t; u;) defined as the average 
of p over the random driving force and coupling coefficients. I n  order to obtain 
an equation for P = ( p )  we notice that (2.9) is a linear stochastic equation ofthe 

where the operator Lo, corresponding to the viscosity term, is a deterministic 
operator and L(t),  corresponding to the nonlinear and driving terms, is a stochas- 
tic operator with white-noise time dependence, i.e. 

W t ) )  = 0, 
(L(t)  L(t')) = 708(t - t ' )  &f. 

Now, it is known that the mean solution of (2.10) satisfies a diffusion equation 
which reads (Kubo 1963; Leibowitz 1963; Brissaud & Frisch 1974) 

W P t  = Lo@) + +TO &f(P). (2.11) 

Asimilar remarkwas used by Edwards (1964) with the difference that hisLiouville 
equation had white-noise forcing terms but no white-noise coupling coefficients. 
Applying (2.1 1) to (2.9) and using the statistical properties of the driving forces 
and coupling coefficients, we obtain after some algebra 

Our purpose is now to show that in the limit N -+ 00 equation (2.12) admits 
factorized solutions, i.e. that the different modes decouple asymptotically.? 
For this, we introduce the reduced probability densities Ps ( t ;  ul, . . ., us) obtained 
from P by integration over all the ua with a > S. The same integrations applied 
to (2.12) lead to the following set of equations for the evolution of the reduced 
probability densities : 

C ( ~ ~ , u ~ , u Y ) P d u ~ + ~ . . .  duN, (2.13) 

where the operators C(ua, up, uy) are defined by 

for any YP. At this point we notice that, from the assumptions made in the pre- 
ceding sections, the probability density P is invariant under permutations of 
the different ua. Using this symmetry property and separating the various terms 

j Our factorization property, which concerns only (greek) superscripts, is an exact 
consequence of the stochastic model and has nothing to do with the factorization assump- 
tions of Herring (1966), which concern latin subscripts. 
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in the integral on the right-hand side of (2.13) according to  the respective values 
of a, p, y and S, we find that, for N --f co, only the terms with a < S and p, y, > S 
have a non-zero limit; this leads to the following hierarchy for the limiting 
reduced probability densities Pg = lim Ps: 

N+oO 

+ C(ua, U ~ + ~ , U ~ + ~ )  P,"+,duS+1duSf2. (2.14) 

This derivation parallels the standard derivation of the BBGKY hierarchy from 
the Liouville equation obtained in the thermodynamic limit in statistical 
mechanics (Prigogine 1962, chap. 7 ) .  The remarkable point about the linear 
equation (2 .14)  is that it admits factorized solutions. Indeed, setting 

a=l " S  

PE(t; u1, . .., U S )  = p( t ;  u1) ... p(t;uS), (2 .15)  

we readily find that (2 .14)  is identically satisfied provided that p satisfies the 
following nonlinear equation (the analogue of the Boltzmann equation of kin- 
etic theory) : 

Since, by the assumption of initial statistical independence of the ua, the proba- 
bility densities are factorized initially, they will remain so a t  any later time. 
Notice also that (2 .16) ,  although written as a partial differential equation, is in 
fact a functional differential equation since the Fourier variables are continuous. 

The nonlinear 'Boltzmann' equation (2.16) appears, at  first sight, even more 
formidable than the Hopf equation written directly for the Navier-Stokes 
equations. The main difference is that the Hopf equation does not lead to a 
closed equation for the simultaneous velocity covariance whereas, from (2 .16) ,  
we derive the following master equation: 

au&lat = 7TgFdC + VDch u d h  + V D d h  &# + 270LdhcLd'(fc, u& uw. 
f 270LdbcLhvc'qc'u#(f f 270L&hcLhvc*Udh8&, (2 .17)  

where the covariance U,, is defined by 

Equation (2 .17)  is obtained from (2 .16)  after multiplication by ui u&, and inte- 
gration over u1. Furthermore, it may be checked that the stationary solution of 
(2.16) is a Gaussian probability distribution with zero mean and covariance given 
by the solution of (2.17).  We have thus proved that in the MRC model the various 
modes decouple and become asymptotically Gaussian. The Gaussian property 
is peculiar to the MRC model and does not hold for the Navier-Stokes equations 
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(Ogura 1963). Finally, the master equation (2.17) can be rewritten in a more 
compact form. Let the Navier-Stokes equations or any other nonlinear quadratic 
equation be written in some function space as 

w t ) / a t  = L ( u ( t ) ,  U P ) )  +Lo@) + f W ,  
where Lo and L are respectively linear and symmetric bilinear time-independent 
operators. Let f ( t )  be random with zero mean and covariance 

where 0 denotes a tensor product. Then, the MRC master equation reads 

a - 
- ( t h o u )  = 7 0 ~ + ( ( L o ~ @ ~ ) + ( u @ ~ 0 u ) +  270L(U,U)@L(U,u)  
at 

-1 - 
n - + 2T0~(L(U,u) ,u)@uf2T0th~L(zL,L(u,~. ) ) ,  (2.18) 

where u factors belonging to  the same covariance have been linked together. 
The master equation (2.18) is not new in many respects. First, it can be viewed 

as a Markovianized form of the single-time quasi-normal approximation 
(Tatsumi 1957) obtained by replacing a time integration merely by an instan- 
taneous factor +70. Of course (2.18) does not lead to negative energy spectra, 
since we have shown that it is based on a stochastic model. Second, this equation 
may be viewed as a special case of an approximate equation obtained by Edwards 
(1964) by Pokker-Planck techniques (cf. also Edwards & McComb 1969); it 
turns out that  for the MRC model the expansion terminates exactly a t  its first 
term. Third, (2.18) is also a Markovianized form of the Kraichnan (1959) DIA 
equations. Finally, (2.18) can be easily derived from a linear white-noise Langevin 
model of the form considered by Leith (1971) and Kraichnan (1971). The basic 
result of this section is that we have derived the master equation (2.18) from a 
nonlinear stochastic model of the Navier-Stokes equations [equation (2.4)].  
The present derivation is the first one not based on diagrammatic techniques. 

3. Explicit forms of the master equation 
In  fj 2, we have chosen rather general notation so as to make the MRC mast'er 

equations directly applicable to any quadratically nonlinear evolution problems 
such as the MHD equations, the Boussinesq equations, the Vlasov equation, etc. 
The MRC master equation takes its simplest form when applied to the Burgers 
equation (Burgers 1950). 

a a~ a2u 
- u ( x , t ) + u -  = v-++f(x,t) at ax ax2 

assuming (u) = 0 and homogeneity, and defining 

I N  
U ( x ,  t )  = lim - 2 (ua(y, t )  ua(y +x, t ) ) ,  (3.2) 

N-tm N a=l  
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The master equation (2.17) now reads 

a a 2  r a2 
at ax2 2 ax2 
- U(x ,  t )  = rOF(x )  + 2v - U(x ,  t )  - 2- [U(x ,  t )  - U(O,  t ) ] 2 .  (3.4) 

This equation can be solved exactly for the stationary case (Lesieur 1973). The 
non-stationary case is very easily solved numerically (Brissaud, Frisch, Leorat, 
Lesieur, Mazure, Pouquet, Sadourny & Sulem 1973). It has also been studied 
from a mathematical viewpoint by Brauner, Penel & Teman (1974). 

For three-dimensional homogeneous isotropic non-helical turbulence, the 
MRC master equation reads 

( $ + 2 v k 2 ) E ( k , t )  = ~ ~ F ( k ) + 3  4 ss,,,", -b3(k ,p ,q)  

E(k,  t )  is the usual energy spectrum such that 

(u"t)) = jm E(k,  t )  dk, 
0 

F(k)  is the injection spectrum and the integration in the p ,  q plane is over the 
domain Ak such that k, p and q can be the sides of a triangle. The coeEcient 
b3(k,p, q) is given by 

where x, y and x are the cosines of the interior angles of the k , p ,  q triangle 

same notation 

b3P, P ,  4)  = (P/W (XY + z3), (3.6) 

For two-dimensional homogeneous isotropic turbulence, we obtain with the 

where 

It is easily shown (e.g. by dimensional inspection) that the MRC energy 
inertial range is characterized by a k-2 spectrum. This follows from the constancy 
of the triad interaction time ro over the inertial range and can easily be modified 
by introducing a suitable triad-dependent interaction time rkpg as was done by 
Orszag (1969) and Kraichnan (1971). 

Although it may be tempting to make such a change in order to ensure more 
quantitative contact with turbulent flows, this is probably not necessary for 
many qualitative investigations. Problems such as the onset of dissipation after 
a finite time in inviscid three-dimensional turbulence (Brissaud, Frisch, 
Leorat, Lesieur, Mazure, Pouquet, Sadourny & Sulem 1973; Frisch 1973), the 
existence of direct enstrophy and inverse energy cascades in two-dimensional 
turbulence (Pouquet, Lesieur & And& 1973) and the existence of helicity 
cascades in three-dimensional isotropic turbulence lacking reflexional symmetry 
(Lesieur 1973) can all be tackled both by analytic and numerical methods using 
the MRC model, even a t  very high Reynolds numbers. 
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